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In this work we analyse the stability properties of the flow over an isothermal,
semi-infinite vertical plate, placed at zero incidence to an otherwise uniform stream
at a different temperature. Near the leading edge the boundary layer resembles
Blasius flow, but further downstream it approaches that of pure buoyancy-driven
flow. A coordinate transformation that describes in a smooth way the evolution
between these two limiting similarity states, where the viscous and buoyancy forces are
respectively dominant, is used to calculate the basic flow. The stability of this flow has
been investigated by making the parallel flow approximation, and using an accurate
spectral method on the resulting stability equations. We show how the stability modes
discussed by other authors can be followed continuously between the forced and free
convection limits; in addition, new instability modes not previously reported in the
literature have been found. A spatio–temporal stability analysis of these modes has
been carried out to distinguish between absolute and convective instabilities. It seems
that absolute instability can only occur when buoyancy forces are opposed to the free
stream and when there is a region of reverse flow. Model profiles have been used in
this latter case beyond the point of boundary layer separation to estimate the range
of reverse flows that support absolute instability. Analysis of the Rayleigh equations
for this problem suggests that the absolute instability has an inviscid origin.

1. Introduction
Linear stability analysis has proven successful in the description of the first stages

of the transition to turbulence in a great variety of physical flows. This can be
accomplished by investigating the response of the flow to planar and oblique wave
perturbations of various frequencies. When a physical mechanism is present that can
transfer energy from the basic flow to these perturbations, they may grow in space
and/or time until they are intense enough to trigger nonlinear effects and eventually
generate turbulence. The linear stability analysis consists of determining the complex
wavenumbers and frequencies of the waves that the system supports, and whose
imaginary parts describe the growth or decay of these waves. In most previous studies
of thermal boundary layers either a purely temporal or spatial instability approach
was taken. For the former, the imaginary part of the frequency is non-zero and
the wavenumber is taken to be real; the asymptotic growth in time of the wave
amplitude is then governed by the imaginary part of the frequency. In the spatial
analysis, the frequency is real and the wavenumber is allowed to be complex; the
spatial growth rate is then determined by the imaginary part of the wavenumber. The
second approach is preferred in making comparisons with experiments, where the
boundary layer is often perturbed with waves of fixed frequency. But the limitations
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of adopting a purely spatial or temporal instability analysis were made clear with the
introduction of the concepts of absolute and convective instability, first in the field
of plasma physics by Twiss (1951), Landau & Lifshitz (1954, 1959), Briggs (1964)
and Bers (1975); and later in hydrodynamics by Gaster (1968), Tam (1971), Huerre
& Monkewitz (1990, 1985) and Brevdo (1995) among others. They concluded that
the election of a temporal or spatial analysis cannot be based exclusively on physical
intuition, and can only be determined after the behaviour of both the wavenumber
and frequency have been studied in the complex plane, and the convective or absolute
character of the instability has been determined. This classification is significant when
the Galilean invariance of the flow is broken, for example because of the boundary
conditions, as this determines a privileged reference frame or ‘laboratory frame’. In
a convectively unstable flow, the disturbance is convected away from the point of
excitation, eventually decaying to zero at all points in the flow in the laboratory frame.
In the case of absolute instability, the initial impulse grows in time, both upstream
and downstream, eventually contaminating the entire flow. These characteristics are
in turn relevant to the local–global properties of the flow as explained by Huerre
& Monkewitz (1990). For a flow convectively unstable everywhere, the dynamics are
determined by the characteristics of the external excitations, and the system behaves
as a spatial amplifier. By contrast, the evolution of temporally growing global modes is
determined by initial conditions in time, and the interaction with nonlinear effects can
give rise eventually to self-sustained global modes. This classification of instabilities
is being increasingly applied to fluid dynamics in the search for an explanation of the
transition to turbulence. An example of the theoretical approach and the consequences
for an experiment is the boundary layer over a rotating disk studied by Lingwood
(1995, 1996). In general the spatial analysis is appropriate for convective instability,
while a spatio–temporal analysis is required if a region of absolute instability is
present.

One of the paradigmatic examples of linear stability analysis is the laminar bound-
ary layer on a flat plate, whose similarity solution is known as Blasius flow. This
velocity profile has no inflection point and so is stable to inviscid perturbations, but
the addition of a small amount of viscosity leads to the existence of a finite range of
convectively unstable wavenumbers and frequencies.

When a non-uniform thermal field is added to the Blasius flow, for example by
keeping the plate at a constant temperature different from the surrounding fluid, the
resulting buoyancy force is a new source of destabilizing energy. The interaction and
relative importance of buoyancy and viscosity produce a range of states known as
mixed convection, intermediate between the two limiting cases where either buoyancy
forces (free convection) or the external flow (forced convection) are dominant.

The stability of the mixed convection regime has not been intensively studied in
the literature, basically because of the additional numerical complexity introduced by
the lack of similarity solutions for the basic flow and the coupling of the energy and
momentum disturbance equations. The first stability analysis of mixed convection
flow along an isothermal vertical flat plate was by Mucoglu & Cheng (1978). In that
case, the temporal instability of a Blasius flow perturbed by small buoyancy effects
was considered. The basic flow was obtained by a local non-similarity method and
the stability equations were solved by a Runge–Kutta shooting method with Kaplan
(1964) filtering. They found that for assisting external flow, i.e. when the buoyancy
force and external flow are in the same direction, the flow becomes increasingly stable
with increasing buoyancy force, while the opposite occurs for opposing flow.

The stability properties of the mixed convection flow near the free convection
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regime were analysed by Brewster & Gebhart (1991). In that case the basic flow
was obtained by perturbation expansions around the pure natural convection regime,
and the stability equations were solved by numerical integration with a fourth-order
predictor–corrector method. Only spatial instability was considered and it was found
that the external flow reduces the critical Reynolds number but makes other unstable
modes less unstable. The reverse occurs for the case of opposing flow.

To understand how the instability properties of these two limiting cases are related,
and what happens in between, it is necessary to carry out an analysis of the entire
mixed convection regime. As far as we know, the only stability study for the entire
mixed convection regime is due to Lee, Chen & Armaly (1987). They employed a
coordinate transformation to obtain in a continuous way the solution of the basic
flow for the whole mixed convection regime. They analysed the stability properties
by solving a quasi-parallel model but, as indicated in Brewster & Gebhart (1991),
this procedure is inconsistent with the boundary layer approximation. The presence
of more than one instability mode (two) was first reported in that study. One of
these modes agrees with the mode obtained by Brewster & Gebhart (1991) for the
free convection regime. The other one corresponds to the neutral curve for the
forced convection profile described in Mucoglu & Cheng (1978). The coexistence
of these two modes for different mixed convection regimes was reported, but their
evolution throughout the complete mixed convection regime remained incomplete,
in part because of limitations in their numerical method. We are not aware of any
experimental data for this physical problem, although boundary layers over heated
or cooled surfaces occur in many engineering applications.

Our interest here is partly to solve the mixed convection problem with an alternative
numerical procedure and different method for obtaining the basic flow, thus providing
independent confirmation of earlier findings, but mainly to build up a more complete
overall picture of the stability characteristics. In particular, we are interested in the
convective and absolute nature of the instabilities as this has a strong bearing on the
transition to turbulence. Consequently we apply a spatio–temporal analysis and use a
coordinate transformation that describes in a smooth way the evolution between the
two limiting similarity states proposed by Hunt & Wilks (1981). These equations were
solved using the Keller-box method as described by Keller & Cebeci (1971), which is
especially suited to boundary layer equations when arbitrary non-uniform grids are
present, like the ones necessary for the spectral methods that we used to solve the
stability equations. We are not aware of any other work where spectral methods have
been used in the stability analysis of this physical problem. This method has allowed
us to extend the parameter regime studied by previous investigators, and to discover
new instability modes.

By taking both wavenumbers and frequencies to be complex, i.e. by using a spatio–
temporal analysis, and by considering both unstable and stable modes, we were able
to locate the branch points connecting modes from different Riemann surfaces of the
dispersion relation. Briggs’ (1964) criterion was used to distinguish between stable
and unstable modes, and in the latter case to determine their convective or absolute
character. Both assisting and opposing external flow were studied and, beyond the
point of separation of the boundary layer, analytical models of the basic flow were
used, as the numerical approach used in the other cases ceases to be valid (the
boundary layer equations become singular at separation). The inviscid limit of the
absolute instability was investigated by solving the corresponding Rayleigh equation.
The amount of reverse flow required for absolute instability in this problem has been
determined.
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The paper is structured as follows: § 2 gives the equations of motion, the method
for calculating the basic flow and the formulation of the stability problem and Briggs
criterion. This section also describes briefly the numerical methods that have been
used. In § 3 the different stability modes of the modified Orr–Sommerfeld equations
are presented, showing their evolution as the mixed convection regime evolves between
the forced convection and the free convection limits. Dispersion curves are shown
where the Briggs criterion can be applied to distinguish between convective and
absolute instabilities, and in the latter case the inviscid limit was studied. Conclusions
and suggestions for further work are presented in § 4.

2. Analysis
2.1. Equations of fluid motion

In this work we study the stability characteristics of the boundary layer in a uniform
stream over a semi-infinite vertical plate at constant temperature. Under these condi-
tions both viscous and buoyancy forces, resulting from the thermally induced density
differences, may contribute energy to the growth in time or space of any disturbance
present in the flow. The relative importance of these destabilizing mechanisms varies
with the distance from the edge of the plate, and this produces substantial modi-
fications to the stability properties. Near the leading edge of the plate, the flow is
dominated by the incident stream and may be described by the Blasius similarity
solution. On the other hand, as the heat is diffused from the plate to the fluid, the
buoyancy forces become more important, and far away from the leading edge, the
flow approximates the state of free convection (Ostrach similarity solution). Only
two-dimensional disturbances will be considered here, but the extension to three-
dimensional disturbances is straightforward in principle.

We use the Boussinesq approximation, and so the only fluid property to vary
with temperature is the density, and this dependence is assumed to be linear. Under
these conditions the equations of mass, momentum and energy conservation may be
expressed as

∂u

∂x
+
∂v

∂y
= 0, (2.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν∇2u± βg(T − T0)− 1

ρ0

∂p

∂x
, (2.2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= ν∇2v − 1

ρ0

∂p

∂y
, (2.3)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= κ∇2T , (2.4)

where ρ0 is the mean density, g is the gravitational acceleration, ν, κ and β are the
kinematic viscosity, thermal diffusivity and coefficient of thermal expansion of the
fluid respectively. The downstream coordinate is x and y is perpendicular to the plate,
u and v are the corresponding components of the velocity vector, p is the pressure and
t is the time. The temperature field is described by T , the plate is kept at constant
temperature T1 and the fluid far from the plate has velocity U0 in the x-direction and
temperature T0. The plus and minus signs in the buoyancy term correspond to the
situations where the external flow and the buoyancy force are in the same direction
(assisting flow), and when they are in opposite directions (opposing flow) respectively.
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The appropriate boundary conditions for equations (2.1)–(2.4) are u = v = 0,
T = T1 on y = 0, and u→ U0, T → T0 as y →∞.

2.2. The basic flow

Equations (2.1)–(2.4) can be re-written using a stream function formalism, which
reduces the number of equations and eliminates the pressure. Furthermore, applying
the boundary layer approximations for steady flow the following set of equations is
obtained:

∂ψ

∂y

∂2ψ

∂y∂x
− ∂ψ

∂x

∂2ψ

∂2y
= ν

∂3ψ

∂y3
± βg(T − T0), (2.5)

∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
= κ

∂2T

∂y2
, (2.6)

where ψ is the stream function for the basic flow defined by

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (2.7)

The mixed convection flow presents the additional difficulty that it lacks similarity
solutions. In most of the previous works, either non-similarity methods or asymptotic
expansions were used, but in the former it is difficult to estimate the magnitude of the
errors, and the latter are useful only near to the similarity regimes. To describe in a
continuous form the evolution between the two asymptotic regimes, where the viscous
and buoyancy forces are respectively dominant, we adopted the transformation for
the stream function and temperature distribution proposed by Hunt & Wilks (1981).

Under this transformation the following characteristic velocity, Uc, temperature, Tc,
and length, δ, are defined:

Uc = U0(1 + ξ)1/2, Tc = T1 − T0, δ =

(
2νx

U0

)1/2
1

(1 + ξ)1/4
. (2.8)

The non-dimensional buoyancy parameter ξ measures the relative importance of the
viscous–inertia and buoyancy forces and is defined as

ξ =
|Grx|
Re2

x

, Grx =
gβ(T1 − T0)x

3

ν2
, Rex =

U0x

ν
, (2.9)

where Grx and Rex are the local Grashof and Reynolds numbers based on the
distance from the leading edge. For ξ = 0, the flow is equivalent to a Blasius profile,
as ξ → ∞ it evolves towards a free convection regime and when ξ = O(1) the
buoyancy and viscosity–inertia terms are comparable. The non-dimensional stream
function, f, temperature field, θ, and coordinate normal to the plate, η, are defined
using the quantities introduced in (2.8) as

f(ξ, η) =
ψ

Ucδ
, (2.10)

θ(ξ, η) =
T − T0

Tc
, (2.11)

η =
y

δ
. (2.12)
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Using these transformations, (2.5)–(2.6) can be written as

∂3f

∂η3
+

(4 + 6ξ)

4 (1 + ξ)
f
∂2f

∂η2
− ξ

ξ + 1

(
∂f

∂η

)2

± 2ξθ

1 + ξ
= 2ξ

{
∂2f

∂ξ∂η

∂f

∂η
− ∂2f

∂η2

∂f

∂ξ

}
, (2.13)

1

Pr

∂2θ

∂η2
+

(4 + 6ξ)

4 (1 + ξ)
f
∂θ

∂η
= 2ξ

{
∂f

∂η

∂θ

∂ξ
− ∂f

∂ξ

∂θ

∂η

}
, (2.14)

where Pr is the Prandtl number, taken to be constant and equal to 0.733, which
corresponds to air under atmospheric conditions. The corresponding boundary con-
ditions are: f = ∂f/∂η = 0, θ = 1 on η = 0; and ∂f/∂η → (1 + ξ)−1/2, θ → 0 as
η →∞. The non-slip boundary condition on the plate breaks the Galilean invariance,
singling out a particular ‘laboratory frame’. This set of equations is valid throughout
the mixed convection regime, as ξ varies from ξ = 0 (forced convection) to ξ → ∞
(free convection).

2.3. Linear perturbation analysis

The motion is now decomposed into a mean flow which is supposed steady (basic
flow) and a superimposed disturbance (primed variables):

ũ(x, y, t) = u(x, y) + u′(x, y, t), (2.15)

ṽ(x, y, t) = v(x, y) + v′(x, y, t), (2.16)

p̃(x, y, t) = p(x, y) + p′(x, y, t), (2.17)

T̃ (x, y, t) = T (x, y) + T ′(x, y, t). (2.18)

Substituting these equations in (2.1)–(2.4) the terms containing only basic flow
quantities can be eliminated, as they satisfy (2.5)–(2.6). For small amplitudes we
neglect the nonlinear combinations of perturbation quantities, which leads to the
linearized disturbance equations:

∂u′

∂x
+
∂v′

∂x
= 0, (2.19)

u′
∂u

∂x
+ v′

∂u

∂y
+
∂u′

∂t
+ u

∂u′

∂x
+ v

∂u′

∂y
= ν∇2u′ ± gβT ′ − 1

ρ0

∂p′

∂x
, (2.20)

u′
∂v

∂x
+ v′

∂v

∂y
+
∂v′

∂t
+ u

∂v′

∂x
+ v

∂v′

∂y
= ν∇2v′ − 1

ρ0

∂p′

∂y
, (2.21)

u′
∂T

∂x
+ v′

∂T

∂y
+
∂T ′

∂t
+ u

∂T ′

∂x
+ v

∂T ′

∂y
= κ∇2T ′. (2.22)

In order to exploit a normal mode structure for the disturbances, it is necessary
to make a parallel flow approximation, where the wavenumber, frequency and basic
flow quantities are taken to be independent of the x-coordinate. This is supposed to
be justified provided that the waves of interest have a length that can be considered
small compared to the distances over which the boundary layer is growing. For a
more detailed description of the conditions in which the parallel approximation is
valid see Brevdo & Bridges (1997).

Thus, we take

u = u(y), v ≡ 0, T = T (y), (2.23)
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and a solution of the form

ψ′ = φ̃(y)ei(αx−ωt), T ′ = s̃(y)ei(αx−ωt), (2.24)

where ψ′ is the stream function of the perturbation and T ′ its temperature distribution
function.

Using the same characteristic quantities defined in (2.8) for the basic flow, the ampli-
tude functions of the disturbance stream function and temperature, the wavenumber
α and frequency ω are non-dimensionalized as

φ =
φ̃

δUc

, s =
s̃

Tc
, (2.25)

ω = ω̃
δ

Uc

, α = α̃δ, (2.26)

where the tilde denotes dimensional quantities. Substituting (2.23) and (2.24) into
(2.19)–(2.22) the following non-dimensional stability equations are obtained:

(
φ′′ − α2φ

) (
ū− ω

α

)
− φū′′ =

1

iαReδ

(
φiv − 2α2φ′′ + α4φ± 2ξ

ξ + 1
s′
)
, (2.27)

s
(
ū− ω

α

)
− φT̄ ′ = 1

iαReδP r

(
s′′ − α2s

)
, (2.28)

where the primes denote derivatives with respect to η, which is now just a non-
dimensional y-variable due to the parallel flow approximations. The barred quantities
correspond to the non-dimensionalized basic flow and are defined using the solutions
to (2.13)–(2.14) as

ū =
∂f

∂η
, ū′′ =

∂3f

∂η3
, T̄ ′ =

∂θ

∂η
, (2.29)

and the Reynolds number is defined as

Reδ =
Ucδ

ν
. (2.30)

The corresponding homogeneous boundary conditions for equations (2.27)–(2.28)
are

φ(0) = φ′(0) = s(0) = φ(∞) = φ′(∞) = s(∞) = 0, (2.31)

satisfying non-slip and zero normal velocity at the wall, decaying disturbances in the
free stream and the prescribed temperature boundary conditions.

In this work we carry out a spatio–temporal stability analysis and consequently both
the wavenumber α and the frequency ω will be taken to be complex numbers. Solutions
of these two coupled ordinary differential equations that satisfy the homogeneous
boundary conditions only exist for certain combinations of the complex parameters
α and ω. We will denote with subscripts r and i the real and imaginary parts of the
variables respectively. Given two of αr , αi, ωr , ωi, the other pair appears as eigenvalues
of these equations, satisfying a dispersion relation of the form

D(ω, α) = 0. (2.32)

The complexity of the dispersion relation for this problem makes it necessary to
obtain its solution using numerical methods that will be described in § 2.6.
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2.4. Classification of instabilities

As described in § 1, the stability properties of the perturbations were determined
using a spatio–temporal analysis and the Briggs criterion. This is based on the study
of the long time behaviour of an impulsive response of an infinite system to a
localized excitation that is zero for t < 0. This initial value problem corresponds to
the inhomogeneous equivalent of (2.27)–(2.28) and its solution can be expressed in
the form of a Green function in spectral space G(α, ω), which can be converted to the
physical space through inverse Laplace and Fourier transforms of the form

G(x, t) =
1

(2π)

∫
A

∫
F

ei(αx−ωt)

D(α, ω)
dωdα, (2.33)

where the denominator in the integrand corresponds to the dispersion relation intro-
duced in (2.32). The Bromwich contour F in the ω-plane is a horizontal line lying
above all the singularities to satisfy causality, and the integration path A lies inside
the analyticity band around the real α-axis. The Briggs criterion makes use of the
properties of the dispersion relation, causality arguments and (2.33) to determine the
absolute/convective character of the instability.

We will call a path in the α-plane generated by the dispersion relation and a
prescribed path in the ω-plane a spatial branch, and a path in the ω-plane generated
by the dispersion relation and a prescribed path in the α-plane a temporal branch.
Causality arguments establish that for ωi positive and large enough all the spatial
branches should lie either above or below the real axis in the α-plane, without
crossing the real α-axis. This ensures that the flow is undisturbed far from the
source. In this situation, a branch in the upper half-plane (αi positive) corresponds
to a perturbation propagating downstream, and one in the lower half-plane to a
perturbation propagating upstream. If when ωi is lowered towards zero one of the
branches crosses the real α-axis then it is unstable, otherwise it is stable. The Briggs
criterion states that if there exists a common branch point with ωi > 0 between two
or more spatial branches, so that at least two of them lie in different α half-planes for
ωi sufficiently large, then the flow is absolutely unstable. This type of branch point is
called a pinch point.

The appearance of absolute instabilities in buoyancy-induced boundary layer flows
seems to be restricted to the existence of flow reversal, as found by Krizhevsky, Cohen
& Tanny (1996) for the free convection flow over an isothermal vertical flat plate,
immersed in a linear ambient thermal stratification. They showed that for absolute
instability the value of the critical Reynolds number grows rapidly when the intensity
of the reverse flow is reduced. Eventually, when no reverse flow is present there
is no transition to absolute instability. This is in agreement with all the previous
analyses of wall-bounded flows. In the absence of a plate, e.g. in a wake, absolute
instability can occur without reverse flow. Wake stability has been studied by Betchov
& Criminale (1966) using analytical models of the wake flow behind a flat plate, and
more recently by Woodley & Peake (1997) who investigated the global linear stability
of the same problem but using a basic state obtained by integration of the boundary
layer equations.

In this work we analyse, in the case of opposing flow, how the increase of the
buoyancy force, and the eventual appearance of reverse flow, gives rise to absolute
instability in the mixed convection boundary layer. We relate the modes in the
dispersion relation responsible for this transition to the modes present when there is
only convective instability.



Mixed convection stability 97

1.0

0.8

0.6

0.4

0.2

0 2 4 6 8 10 12

u

η

ξ =1.6 ×1010

ξ =11

ξ = 2.2

ξ = 0.6

ξ = 0

Figure 1. Velocity profiles of the basic flow for assisting external flow. The profile with ξ = 0
corresponds to the forced convection regime, and the one for ξ = 1.6× 1010 approximates the free
convection regime.

2.5. Inviscid limit

As some terms neglected in the parallel approximation are of the same order as terms
in the Orr–Sommerfeld equations, these equations are not a consistent approximation
to the full equations of motion. However a parallel–inviscid analysis is consistent
since then all inverse powers of Reδ are neglected.

In the limit of Reδ →∞, and as we are considering Pr to be constant, (2.27)–(2.28)
take the form (

αū′′

αū− ω + α2

)
φ− φ′′ = 0, (2.34)

s(αū− ω)− φαT̄ ′ = 0, (2.35)

resulting in the partial decoupling of the velocity and temperature disturbance equa-
tions. Equation (2.34) has the same form as the Rayleigh equation for the Blasius
flow. As the boundary conditions for s are the same as those for φ, it is sufficient to
solve for α and ω in (2.34), so that φ is bounded as η → ∞, and then to calculate s
from (2.35) if required. The only effect of the temperature field in the inviscid stability
problem is therefore through its modification of the basic velocity profile. The inviscid
problem will be studied because it allows us to determine whether the fundamental
instability mechanisms are viscous or inviscid in origin, and to help us to understand
the behaviour of the viscous problem at Reynolds numbers that are too high for the
numerical methods.

2.6. Numerical methods

The basic flow equations (2.13) and (2.14) were solved using the Keller-box method
described in Keller & Cebeci (1971), which is well suited for parabolic partial dif-
ferential equations. In this method the partial differential equations are written as a
first-order system and centred difference quotients and averages at the midpoints of
a rectangular net in η and ξ are used to transform it into finite difference equations.
In the η-direction a grid of 360 points in the interval [0, 12] was used, including
the collocation points later employed in the pseudospectral solution of the stability
problem. Extrapolation was used for the collocation points lying outside that range.
A variable integration step was used in ξ, corresponding to 0.01% of the ξ value in
the previous step. The resulting highly implicit and nonlinear equations were solved
using the Powell Hybrid Method (from the MINPACK Fortran library). In figure 1
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Figure 2. Velocity profiles of the basic flow for opposing external flow. The continuous lines
correspond to solutions of equations (2.13)–(2.14) obtained with the Keller-box method. The dashed
lines correspond to solutions of equation (2.36) used to model the flow after the separation of the
boundary layer. For increasing reverse flow the parameters are (a = −0.25, b = 0.92, c = 0.09,
d = 0.09), (a = −0.25, b = 0.92, c = 0.13, d = 0.13) and (a = −0.25, b = 0.92, c = 0.17,
d = 0.18).

are plotted some of the velocity profiles for assisting flow at different values of ξ
obtained by solving (2.13)–(2.14) in this way.

This numerical method and equations are based on the boundary layer approxi-
mation, and so cannot be used beyond a separation point. In the case of opposing
flow, separation will always occur sufficiently far from the leading edge. The extension
beyond this point is obtained through model profiles of the form

ū(η) = −eaη
2

(b+ cη + dη2) + b, (2.36)

where the parameters a, b, c and d were chosen to satisfy the boundary conditions
and match the profile obtained numerically at the point of separation. In figure 2
some basic velocity solutions for opposing flow are presented. The continuous lines
correspond to solutions of equations (2.13)–(2.14) before separation, while the dashed
lines are described by (2.36).

Spectral methods provide an efficient means of solving stability equations because
of their minimal phase errors (see Canuto et al. 1988), usually offering more accurate
results than finite-difference methods, even using coarser grids. In this work, linear
combinations of Chebyshev polynomials were used as they are more suitable for
asymmetric boundary conditions than the Fourier expansions, and the resulting
matrices were solved with a QR algorithm. The two stability equations were integrated
in η in the interval [0, 256] using 45 collocation points (giving 90 eigenvalues). We
have used a spectral stability code kindly provided by Th. Herbert and described
in Herbert (1990). It can be used to obtain discrete approximations to both the
discrete and continuous spectra and to distinguish between them.

The inviscid equation (2.34) was solved using a method developed by Healey (1998).
To avoid the singularity at the critical point, ηc (where αū(ηc) = ω), a contour of
integration in the complex η-plane was chosen so that it passes below the singularity
when ū′(ηc) > 0 and above it when ū′(ηc) < 0, when ηc is real. A shooting method
with Runge–Kutta integration was then used to solve the equations for the values of
α and ω for which the solution satisfies the boundary conditions.
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Figure 3. Evolution of the neutral curve of the forced convection stability mode as ξ is increased,
i.e. as buoyancy forces become more important.

3. Results and discussion

In figures 3–5 we present the neutral stability curves (corresponding to ωi = 0 and
αi = 0) for assisting external flow at different values of the buoyancy parameter ξ.
We indicate the values of the phase velocity c and group velocity vg of these modes,
relative to the speed of the external flow, for certain values of ξ near the critical
Reynolds number. Figure 3 corresponds to the mode that at ξ = 0 matches that of
Blasius flow (c = 0.39, vg = 0.42). These results are coincident for ξ ≈ 0 with those
of Mucoglu & Cheng (1978) corresponding to a viscous–inertial instability where the
buoyancy force is weak. Near the forced convection regime the buoyancy force has
a stabilizing effect for this mode, but for ξ greater than 1, i.e. when the buoyancy
forces become dominant, they have a modest destabilizing influence. The kink on the
upper branch in figure 3 when ξ = 0 marks the position of a change in disturbance
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Figure 4. Evolution of the neutral curve of the free convection stability mode as ξ is decreased,
i.e. as the external stream becomes more important.

structure, as was first shown by Healey (1995); we will use this property later in the
analysis of the opposing flow case.

Figure 4 presents the evolution of the stability mode that asymptotes to the free
convection solution as ξ → ∞. As reported in Hieber & Gebhart (1971) this mode
is the result of the coupling of the two instability equations (2.27)–(2.28), and its
neutral curve has two critical Reynolds numbers at Reδ = 29 and Reδ = 54 (c = 0.50,
vg = 0.32 and c = 0.32, vg = 0.22 respectively) at ξ = 2.5 × 1010. Although other
instability modes coexist with this one over a wide range of values of ξ, this mode has
the lowest values of critical Reδ and so may be the most relevant in the first stages of
transition to turbulence, but this would need to be confirmed by a detailed analysis
of the growth rates. However, as ξ → 0 the wavenumbers of this mode get smaller
and smaller and presumably it becomes more affected by the non-parallel effects that
have been neglected in these calculations. The presence of two critical Reδ at very
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Figure 5. Evolution of the neutral curve of a stability mode not previously reported in the
literature as ξ is decreased.

high ξ suggests the possibility of more than one stability mode becoming unstable at
the same time, and then nonlinear interactions between them could lead to chaotic
behaviour at low Reδ (this will be investigated in a future work).

Another unstable mode is shown in figure 5, that appears not to have been
previously reported in the literature, but the range of Reδ where this mode is unstable
is much higher than that for other modes (c = 0.26, vg = 0.23). Small variations in
ξ seem to have a significant effect on the neutral curve of this mode, especially for
ξ ≈ 7 and ξ ≈ 2.6. A further unstable mode was found for small ξ at even higher
Reδ , suggesting that there are several unstable modes in addition to the two reported
by Lee et al. (1987). Nevertheless all these modes and the possible wave interactions
between them, have to be taken into account for a complete picture and correct
classification of the mixed convection instabilities.

In the framework of a spatio–temporal analysis, we want to determine if the
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presence of buoyancy forces can give rise to the appearance of absolute instability, in
contrast to the Blasius flow which is known to be convectively unstable. It was found
that all these modes move entirely into the upper half of the α-plane as ωi is increased
above the value defining the Bromwich contour, indicating that they correspond to
perturbations propagating in the downstream direction. As pointed out by Briggs
(1964), the existence of modes moving in opposite directions is a necessary condition
for the existence of absolute instability, but in the case of assisting flow we could
not find any mode propagating in the upstream direction. There are various branch
points between these modes but they all correspond to convective instability, so it
can be concluded that a spatial stability analysis is adequate for the entire mixed
convection regime with assisting external flow.

In the case of opposing flow, we restrict our analysis to the regimes before and
slightly after separation, because beyond this point we have to rely on the approxi-
mation to the basic flow given by (2.36). The coordinate transformation introduced
in § 2.2 allowed as to follow continuously the evolution of the modes presented for
the case of assisting flow in the proximity of ξ ≈ 0 into the case of opposing flow. We
focus our attention here only on the evolution of the mode originating in the Blasius
flow because the other modes only become unstable at very high Reynolds numbers
(figure 5) or correspond to perturbations with very long wavelength (figure 4).

For the viscous mode described in figure 3 it can be seen in figure 6 that increasing
the buoyancy force affects principally the upper branch of the neutral curve. Similar
behaviour was found by Mucoglu & Cheng (1978) but no explanation was given.
Qualitatively similar behaviour was found by Healey (1998) for isothermal Falkner–
Skan boundary layers with negative pressure gradient. Healey found that in the
absence of an inflection point in the mean profile, the kink in the upper branch marks
the transition between two different asymptotic scalings of the neutral curve. To the
left of the kink, and throughout the lower branch, the critical layer lies inside the
viscous boundary layer, leading to a triple-deck asymptotic disturbance structure. To
the right of the kink in the neutral curve, the critical layer lies outside the viscous
layer giving a five-deck asymptotic structure. In the presence of an inflection point the
kink marks the transition between viscous and inviscid behaviour. This can be seen
from the independence of the neutral curve with respect to Reδ , to the right of the
kink. The inclusion of thermal effects in this work does not seem to affect the basic
picture described by Healey (1998). In figure 6 it can also be seen that as ξ is increased
the kink in the upper branch moves towards lower values of Reδ and at the point of
separation (ξ = 0.182) the whole upper branch represents inviscid behaviour. The two
plots at the bottom of figure 6 correspond to the neutral curve after separation, using
the model profile described by (2.36). These two plots show very similar behaviour
to that before separation and suggest that the model (2.36) is a suitable extension
of (2.13)–(2.14) beyond separation. While in Blasius flow the kink is at such a high
value of the Reynolds number that the change in disturbance structure associated
with it is irrelevant in experimental situations, here its effects appear to be present
at values of Reδ accessible to experiment. A similar situation is described in Healey
(1998) for the Falkner–Skan problem, but it was found there that the growth of
inviscid waves is small compared with that of viscous waves in typical experimental
situations. However we will show below that, after the appearance of reverse flow in
the mixed convection regime with opposing flow, the inviscid instability acquires an
absolute character and so may be expected to be dominant over the viscous–inertial
mechanism, which remains convective. Although we are not aware of experimental
results concerning this physical problem, a review of the general case of separated
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Figure 6. Neutral curve of the forced convection mode for opposing flow as the buoyancy force is
increased. When the value of ξ is indicated the figures were obtained solving equations (2.13)–(2.14).
The point ξ = 0.182 corresponds to the separation of the boundary layer. The two pictures at the
bottom correspond to solutions of (2.36) with parameters (a = −0.25, b = 0.92, c = 0.16, d = 0.16)
on the left and (a = −0.25, b = 0.92, c = 0.23, d = 0.22) on the right.

flows, comparing both analytical and experimental results, can be found in Dovgal,
Kozlov & Michalke (1994).

All the instabilities encountered for the opposing flow regime up to the point of
separation were found to be convective in character but after the appearance of reverse
flow the situation is different. Measuring the amount of reverse flow by the magnitude
of the minimum in the velocity profile normalized by the free-stream velocity (ūm),
we found that for values of ūm higher than 0.152 there are two modes that produce
a pinch point that satisfies the Briggs criterion for absolute instability. In figure 7 are
shown two spatial branches at different values of ωi at Reδ = 4200. In figure 7(a) the
branches are in different α-half-planes, so the one with positive αi corresponds to a
wave propagating downstream and, as it crosses the real axis when ωi is reduced, as in
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Figure 7. Two spatial branches that for ωi > 2.0 × 10−2 are contained in different α-half-planes,
and that when ωi is decreased lead to a pinch point. The amount of reverse flow corresponds to
ūm = 0.152 (a = −0.25, b = 0.92, c = 0.23, d = 0.22) and Reδ = 4200.

figure 7(b), it becomes unstable. The branch in the negative αi-half-plane corresponds
to a perturbation moving upstream and is stable because it remains in the same
α-half-plane when ωi is decreased. This mode becomes increasingly damped when the
amount of reverse flow is reduced and rapidly moves towards large values of |αi|. In
figure 7(b, c) it can be seen how both modes approach each other and a pinch point
occurs between them with subsequent branch interchange. As the value of ūm (the
amount of reverse flow) is decreased, the value of Reδ = ReAδ at which the pinch point
occurs for ωi > 0 increases.

In a similar way, for a fixed value of Reδ = 4200, both spatial branches move
far away from each other as the amount of reverse flow is reduced, as shown in
figure 8, and the value of ReAδ appears to increase towards infinity, suggesting that
the inviscid theory would be helpful in this limit. To obtain a better approximation of
the minimum amount of reverse flow required for the absolute instability to develop,
i.e. for the pinch point to occur at positive ωi, and to verify that it is not an artifact
of the parallel flow approximation, the inviscid stability of this flow has been studied.
Figure 9 shows the behaviour of the inviscid spatial branches for ūm = 0.145, where
the pinch point is found to occur at ωi = 1.0 × 10−5, i.e. for ωi ≈ 0. For smaller
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amounts of reverse flow the pinch point occurs at negative ωi, and the instability is
then convective in character. It can be concluded that the absolute instability has an
inviscid origin and that the existence of reverse flow, although relatively small, is a
necessary condition. The same condition was found by Huerre & Monkewitz (1985)
for free shear layers (ūm = 0.136), but this situation may be different in buoyancy
plumes and wakes, where the damping and symmetry imposed by the plate are not
present, making possible the appearance of absolute instability without reverse flow.

4. Conclusions
In this work we have studied the linear stability characteristics of the mixed convec-

tion boundary layer in a uniform stream over a semi-infinite vertical plate at constant
temperature. Under these conditions both viscous and buoyancy forces, resulting from
the thermally induced density differences, may contribute energy to the growth in time
or space of any disturbance present in the flow. Using a coordinate transformation we
were able to carry out a continuous analysis from the forced convection regime near
the leading edge of the plate, to the free convection regime dominant further down-
stream. Instead of adopting in advance a pure spatial or temporal instability analysis
as in previous studies, the convective or absolute character of the instability was first
determined to establish which approach was more appropriate. Taking advantage of
accurate numerical methods for the calculation of the basic flow and the solution
of the disturbance equations, multiple instability modes coexisting throughout the
mixed convection regime have been calculated, thus showing the coexistence of other
instability modes in addition to the two previously reported.

When the buoyancy forces are in the same direction as the external flow all
the instabilities are convective. For the case of opposing flow, the flow is found
to be absolutely unstable beyond a certain threshold of reverse flow. The value
of the Reynolds number at which absolute instability first appears increases with
diminishing reverse flow, and an inviscid analysis has shown that absolute instability
has an inviscid origin.

The analysis in terms of linear convective or absolute instabilities presented here
distinguishes open flows that behave as spatial amplifiers from those that show
intrinsic dynamics. But in general, as described by Couairon & Chomaz (1996), the
transition to global modes due to nonlinear mechanisms will precede the appearance
of linear absolute instability, making it a sufficient but not necessary condition for the
appearance of global behaviour. This work is intended to provide a more complete
linear instability picture of this problem and to be a basis for a subsequent global
theory or nonlinear approach, that may uncover new destabilizing mechanisms as
well as determine the limits of applicability of the linear analysis.

This research was supported by the Department of Mathematics, Keele University,
UK; and P. M. was additionally supported by grant ORS/98020004.
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